A Constructive-Fuzzy System Modeling for Time Series Forecasting

I. Luna¹, R. Ballini² and S. Soares¹

{iluna,dino}@cose.fee.unicamp.br, ballini@eco.unicamp.br

¹Department of Systems, School of Electrical and Computer Engineering, University of Campinas - Brazil
²Institute of Economy, University of Campinas - Brazil

Summary

- Introduction;
- Time series analysis: data pre-processing;
- Input selection;
- General structure of a fuzzy rule-based model;
- Constructive learning;
- Case study: NN3 competition;
- Conclusions and future works.

Time series modeling

Figure 1: Time series modeling.

Analysis and pre-processing

- Reduced data set of the NN3 competition;
- Stationarity: required for input selection;
- Seasonal and trend components:

Econometric Views 2.0 - Quantitative Software, 1995.

- Trend component: series 1, 5 and 9;
- All series with no trend were transformed according to:

$$z^{k}(m) = \frac{y^{k}(m) - \mu(m)}{\sigma(m)}$$

 z^k : stationary version of the time series; $y^k, \ k = 1, \ldots; k$ -th observation;

 $\mu(m)$ is the monthly average value and $\sigma(m)$ is the monthly standard deviation.

Input selection

- 1. **FNN** (*False Nearest Neighbors*): determines the minimum number of lags necessary to represent each pattern or *state* of the time series;
- PMI (*Partial Mutual Information*): measure of information that each new variable x provides, taking into account an existing set of inputs Z. Given variables X e Y, PMI score between X and Y is defined by:

$$PMI = \frac{1}{N} \sum_{i=1}^{N} \log_e \left[\frac{f_{X',Y'}(x'_i, y'_i)}{f_{X'}(x'_i) f_{Y'}(y'_i)} \right]$$
(1)

where:

$$x'_{i} = x_{i} - E(x_{i}|\mathbf{Z})$$
 e $y'_{i} = y_{i} - E(y_{i}|\mathbf{Z})$

Z is the st of inputs already chosen. $E(\cdot | \mathbf{Z})$ is the conditional expected value; N is the number of input-output patterns.

Input selection

$$y = x^4 + e_1$$
$$x = \operatorname{sen}(2\pi t/T) + e_2$$

 $T = 20; t = 1, \dots, 200;$ e_1 and e_2 are noisy signals with normal distribution, $\mu = 0$ and $\sigma = 0, 1$.

Measure	Value	
MI	0.4199	
Correlation	0.0032	

Input selection

Figure 3: PMI.

A general structure

A Constructive-Fuzzy System Modeling for Time Series Forecasting – p.8/20

A general structure

- $\mathbf{x}^k = [x_1^k, x_2^k, \ldots, x_p^k] \in \mathbb{R}^p$ is the input vector at instant $k, k \in \mathbb{Z}_0^+$;
- $\hat{y}^k \in \mathbb{R}$ is the estimate output;
- Given centers c_i ∈ ℝ^p and covariance matrices V_i i = 1,..., M, membership degrees g_i(x^k) are defined as:

$$g_{i}(\mathbf{x}^{k}) = g_{i}^{k} = \frac{\alpha_{i} \cdot P[i \mid \mathbf{x}^{k}]}{\sum_{q=1}^{M} \alpha_{q} \cdot P[q \mid \mathbf{x}^{k}]}$$
(2)

with $\alpha_i \ge 0$, $\sum_{i=1}^M \alpha_i = 1$ and:

$$P[i \mid \mathbf{x}^{k}] = \frac{1}{(2\pi)^{p/2} \det(\mathbf{V}_{i})^{1/2}} \times \\ \times \exp\left\{-\frac{1}{2}(\mathbf{x}^{k} - \mathbf{c}_{i})\mathbf{V}_{i}^{-1}(\mathbf{x}^{k} - \mathbf{c}_{i})^{T}\right\}$$
(3)

A general structure

• Each local model y_i^k , i = 1, ..., M is estimated by a linear one:

$$y_i^k = \phi^k \times \theta_i^{\ T} \tag{4}$$

where $\phi^k = [1 \ x_1^k \ x_2^k \ \dots x_p^k]$ and $\theta_i = [\theta_{i0} \ \theta_{i1} \ \dots \ \theta_{ip}]$.

• The output model \hat{y}^k is computed as:

$$\hat{y}^k = \sum_{i=1}^M g_i(\mathbf{x}^k) \ y_i^k \tag{5}$$

Constructive learning

• **E step**: g_i^k is estimated given \mathbf{x}^k and $y^k \Rightarrow posterior$ estimate h_i^k ;

$$h_i^k = \frac{\alpha_i P(i \mid \mathbf{x}^k) P(y^k \mid \mathbf{x}^k, \theta_i)}{\sum_{q=1}^M \alpha_q P(q \mid \mathbf{x}^k) P(y^k \mid \mathbf{x}^k, \theta_q)}$$

• M step:

- Model parameters are adjusted;
- Adding and pruning conditions are verified.

$$\alpha_i = \frac{1}{N} \sum_{k=1}^N h_i^k \tag{6}$$

Second phase: Adaptation

• Adding a new rule: Assuming a normal input data distribution, with a confidence level equal to $\gamma\%$:

• **Pruning a new rule**: α_i is proportional to the sum of all h_i^k . Thus, the more times the rule is strongly activated, the higher its α_i will be.

 \Rightarrow If $\alpha_i < \alpha_{min}$, then the *i*-th rule will be pruned.

• Reduced data set;

Table 1: Global prediction errors for	series NN3_102	and NN3_104.
---------------------------------------	----------------	--------------

Series	In sample		Out of sample		Out of sample		
	1 step ahead		1 step ahead		1 to 18 steps ahead		
NN3_102	$k = 4, \dots, 108$		$k = 109, \dots, 126$		$k = 109, \dots, 126$		
NN3_104	$k = 4, \dots, 97$		$k = 98, \dots, 115$		$k = 98, \dots, 115$		
Series	M	sMAPE	MAE	sMAPE	MAE	sMAPE	MAE
		(%)	(u)	(%)	(u)	(%)	(u)
NN3_102	3	3.41	179.36	4.72	287.98	11.40	658.05
NN3_104	3	10.98	438.27	6.75	334.93	12.32	612.32

Figure 5: Multiple steps ahead: (a) autocorrelation coefficients estimates, (b) predictions for series NN3_102. A Constructive-Fuzzy System Modeling for Time Series Forecasting – p.14/20

Figure 6: Multiple steps ahead: (a) autocorrelation coefficients estimates, (b) predictions for series NN3_104.

Time series	Difference	Num. inputs	Inputs (lags)	M
1	1	3	1, 2, 4	3
2	0	2	1, 3	3
3	0	2	1, 10	3
4	0	3	1, 2, 3	8
5	1	2	1, 2	6
6	0	3	2, 3, 4	3
7	0	1	1	2
8	0	1	2	2
9	1	2	2, 3	12
10	0	2	1, 6	5
11	0	1	1	2

Table 2: Some characteristics of input selection and model construction.

Figure 7: One and multi-step ahead forecasting for time series NN3_101 to NN3_104.

Figure 8: One and multi-step ahead forecasting for time series NN3_105 to NN3_108.

Figure 9: One and multi-step ahead forecasting for time series NN3_109 to NN3_111.

Conclusions and Future works

- This work presents a methodology for time series modeling.
- Statistical tools combined with novel methodologies provide adequate models.
- Objectives achieved:
 - The study of the different tasks that compose the methodology: from data pre-processing to model validation.
 - The automatic selection of a suitable model structure;
- What needs to be improved:
 - Initialization phase;
 - Adding and pruning conditions.

Thanks for your attention. Ivette Luna iluna@cose.fee.unicamp.br