
A Constructive-Fuzzy System Modeling
for Time Series Forecasting

I. Luna1, R. Ballini2 and S. Soares1

{iluna,dino}@cose.fee.unicamp.br, ballini@eco.unicamp.br

1Department of Systems, School of Electrical and Computer

Engineering, University of Campinas - Brazil
2Institute of Economy, University of Campinas - Brazil

A Constructive-Fuzzy System Modeling for Time Series Forecasting – p.1/20



Summary

• Introduction;
• Time series analysis: data pre-processing;
• Input selection;
• General structure of a fuzzy rule-based model;
• Constructive learning;
• Case study: NN3 competition;
• Conclusions and future works.
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Figure 1: Time series modeling.
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Analysis and pre-processing
• Reduced data set of the NN3 competition;

• Stationarity: required for input selection;

• Seasonal and trend components:

Econometric Views 2.0 - Quantitative Software, 1995.

• Trend component: series 1, 5 and 9;

• All series with no trend were transformed according to:

zk(m) =
yk(m) − µ(m)

σ(m)

zk: stationary version of the time series;

yk, k = 1, . . .: k−th observation;

µ(m) is the monthly average value andσ(m) is the monthly standard

deviation.
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Input selection
1. FNN (False Nearest Neighbors): determines the minimum number of lags

necessary to represent each pattern orstate of the time series;

2. PMI (Partial Mutual Information): measure of information that each new

variablex provides, taking into account an existing set of inputsZ. Given

variablesX eY , PMI score betweenX andY is defined by:

PMI =
1

N

N
∑

i=1

loge

[

fX′,Y ′(x′

i, y
′

i)

fX′(x′

i)fY ′(y′

i)

]

(1)

where:

x′

i = xi − E(xi|Z) e y′

i = yi − E(yi|Z)

Z is the st of inputs already chosen.E(·|Z) is the conditional expected

value;N is the number of input-output patterns.
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Input selection
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Input selection
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Figure 2: FNN.
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Figure 3: PMI.
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A general structure
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Figure 4: A general structure of a fuzzy-rule based system, composed by a total ofM fuzzy rules.
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A general structure
• x

k = [xk
1 , xk

2 , . . . , xk
p] ∈ R

p is the input vector at instantk, k ∈ Z
+

0 ;

• ŷk ∈ R is the estimate output;

• Given centersci ∈ R
p and covariance matricesVi i = 1, . . . , M ,

membership degreesgi(x
k) are defined as:

gi(x
k) = gk

i =
αi · P [ i | xk ]

M
∑

q=1

αq · P [ q | xk ]

(2)

with αi ≥ 0,
∑M

i=1
αi = 1 and:

P [ i | xk ] =
1

(2π)p/2 det(Vi)1/2
×

×exp

{

−
1

2
(xk − ci)V

−1

i (xk − ci)
T

}

(3)
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A general structure
• Each local modelyk

i , i = 1, . . . , M is estimated by a linear one:

yk
i = φk × θi

T (4)

whereφk = [1 xk
1 xk

2 . . . xk
p] andθi = [θi0 θi1 . . . θip].

• The output model̂yk is computed as:

ŷk =

M
∑

i=1

gi(x
k) yk

i (5)
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Constructive learning
Initial structure
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• E step: gk
i is estimated givenxk and

yk ⇒ posterior estimatehk
i ;

hk
i =

αiP (i | xk)P (yk | xk, θi)
∑M

q=1
αqP (q | xk)P (yk | xk, θq)

• M step:

• Model parameters are adjusted;

• Adding and pruning conditions are

verified.

αi =
1

N

N
∑

k=1

hk
i (6)
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Second phase: Adaptation

• Adding a new rule: Assuming a normal input data distribution, with a

confidence level equal toγ%:
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xk + zγ

√

diag(Vi)xk
− zγ

√

diag(Vi)

xk

γ%

From normal distribution table:

γ ≈ 73%

zγ ≈ 1.1

P (i|xk)

Ω is an i/o data set so that
max

i=1,...,M
(P (i|xk ∈ Ω)) < 0.14

⇒ If NΩ > 0

Thencreate a new rule.
≈ 0.14 ≈ (1 − 0.73)/2

• Pruning a new rule: αi is proportional to the sum of allhk
i . Thus, the

more times the rule is strongly activated, the higher itsαi will be.

⇒ If αi < αmin, thenthei−th rule will be pruned.

A Constructive-Fuzzy System Modeling for Time Series Forecasting – p.12/20



Case study: NN3 competition

• Reduced data set;

Table 1: Global prediction errors for series NN3_102 and NN3_104.

Series In sample Out of sample Out of sample

1 step ahead 1 step ahead 1 to 18 steps ahead

NN3_102 k = 4, . . . , 108 k = 109, . . . , 126 k = 109, . . . , 126

NN3_104 k = 4, . . . , 97 k = 98, . . . , 115 k = 98, . . . , 115

Series M sMAPE MAE sMAPE MAE sMAPE MAE

(%) (u) (%) (u) (%) (u)

NN3_102 3 3.41 179.36 4.72 287.98 11.40 658.05

NN3_104 3 10.98 438.27 6.75 334.93 12.32 612.32
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Case study: NN3 competition
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Figure 5: Multiple steps ahead: (a) autocorrelation coefficients estimates, (b) predictions for series

NN3_102.
A Constructive-Fuzzy System Modeling for Time Series Forecasting – p.14/20



Case study: NN3 competition
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Figure 6: Multiple steps ahead: (a) autocorrelation coefficients estimates, (b) predictions for series

NN3_104.
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Case study: NN3 competition

Table 2: Some characteristics of input selection and model construction.

Time series Difference Num. inputs Inputs (lags) M

1 1 3 1, 2, 4 3

2 0 2 1, 3 3

3 0 2 1, 10 3

4 0 3 1, 2, 3 8

5 1 2 1, 2 6

6 0 3 2, 3, 4 3

7 0 1 1 2

8 0 1 2 2

9 1 2 2, 3 12

10 0 2 1, 6 5

11 0 1 1 2

A Constructive-Fuzzy System Modeling for Time Series Forecasting – p.16/20



Case study: NN3 competition
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Figure 7: One and multi-step ahead forecasting for time series NN3_101 to NN3_104.
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Case study: NN3 competition
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Figure 8: One and multi-step ahead forecasting for time series NN3_105 to NN3_108.
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Case study: NN3 competition
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Figure 9: One and multi-step ahead forecasting for time series NN3_109 to NN3_111.
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Conclusions and Future works
• This work presents a methodology for time series modeling.

• Statistical tools combined with novel methodologies provide adequate

models.

• Objectives achieved:

• The study of the different tasks that compose the methodology: from

data pre-processing to model validation.

• The automatic selection of a suitable model structure;

• What needs to be improved:

• Initialization phase;

• Adding and pruning conditions.

Thanks for your attention.

Ivette Luna

iluna@cose.fee.unicamp.br
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