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Time series modeling
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Figure 1: Time series modeling.
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Analysis and pre-processing
Reduced data set of the NN3 competition;

Stationarity: required for input selection;

Seasonal and trend components:
Econometric Views 2.0 - Quantitative Software, 1995.

Trend component: series 1, 5 and 9;

All series with no trend were transformed according to:

() = y*(m) — p(m)
a(m)
z*: stationary version of the time series;
y*, k=1,.... k—th observation;
w(m) is the monthly average value an@m) is the monthly standard
deviation.
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| nput selection

1. FNN (False Nearest Neighbors): determines the minimum number of lags
necessary to represent each patterstaie of the time series;

2. PMI (Partial Mutual Information): measure of information that each new
variablex provides, taking into account an existing set of indt<siven
variablesX eY, PMI score betweelX andY is defined by:

_ fx v (%}, y;) ]
PMI = Zlo [ ol o o (1)

where:
T, = z; — BE(x;|Z) e y; =y; — E(y|Z)

Z is the st of inputs already choseli(-|Z) is the conditional expected
value; N is the number of input-output patterns.
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| nput selection
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| nput selection
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Figure 2. FNN. Figure 3: PMI.
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A general structure
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Figure 4: A general structure of a fuzzy-rule based systemposed by a total af/ fuzzy rules.
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A general structure

" =[zf, 2§, ..., 2f] € RPis the input vector at instart, k € Zg ;

X
j* € R is the estimate output;

Given centerg; € RP and covariance matricég; : = 1,..., M,
membership degregs(x”) are defined as:

Oéz" Pli|x"]

gi(x*) = g7 = (2)
Zaq [ g | x" ]
. M .
with a; > 0, Zizl a; =1 and:
1
) % .
P = Gopraavi)ire ™
X eXP {—%(Xk — ci)Vi_l(Xk — ci)T} (3)
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A general structure

Each local mode}”,i = 1,..., M is estimated by a linear one:

yb = ¢F x 0,1 (4)

Where¢k = [1 ZC’f ZC% ce 33];] and@i = [(910 97;1 e H’Lp]

The output model* is computed as:

M
9" =Y gi(x") yy (5)
1=1
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Constructive learning

Initial structure

M = 2, N patterns L E step: gf IS estimated givelx’“ and
’ I nitialization 5 _ _ ;
EM steps ] y* = posterior estimateh”;
for N patterns .
[ o ostoms e auP(i| PO X, 6)

)

Z(]J\/il quP(q | xF)P(y* | x*, Hq)

No Yes
_l

M=DM+1 :
] EM Seps M step:

Model parameters are adjusted,;

No @ Yes Adaptation Adding and pruning conditions are
T' verified.

M = M —
EM steps
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SSTRE(6)
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End A Constructive-Fuzzy System Modeling for Time Series Forecasting — p.11/20




Second phase: Adaptation

Adding a new rule: Assuming a normal input data distribution, with a
confidence level equal t©%:

ok
 P(ilz")
Q2 is an i/o data set so that | From normal distribution table:
_max (P(ilx" € Q)) <0.14 v~ 73%
T 2 A 1.1
= If No >0

~0.14 ~ (1 —0.73)/2

. ..

x —_—
ok + z,y\/diag(Vi)

Thencreate a new rule

7%

‘a:k — 24/ diag(V;)
Pruning anew rule: «; is proportional to the sum of ali¥. Thus, the
more times the rule is strongly activated, the higheuitsvill be.

= If a; < ayin, thenthe:—th rule will be pruned
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Case study: NN3 competition

Reduced data set;

Table 1: Global prediction errors for series NN3 102 and NINZ!.

Series In sample Out of sample Out of sample
1 step ahead 1 step ahead 1 to 18 steps ahead
NN3_ 102 k=4,...,108 k=109,...,126 | k=109,...,126
NN3_104 k=4,... 97 k=098,...,115 k=098,...,115
Series sMAPE MAE sMAPE MAE sMAPE MAE
(70) (u) (70) (u) (70) (u)
NN3 102 3.41 179.36 4.72 287.98 | 11.40 | 658.05
NN3 104 10.98 | 438.27 6.75 334.93 | 12.32 | 612.32
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Case study: NN3 competition
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Figure 5. Multiple steps ahead: (a) autocorrelation caoeffiis estimates, (b) predictions for series
NN3 102.
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Case study: NN3 competition
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Figure 6: Multiple steps ahead: (a) autocorrelation caeffiis estimates, (b) predictions for series

NN3_104.
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Case study: NN3 competition

Table 2: Some characteristics of input selection and maaledtcuction.

Time series| Difference | Num. inputs | Inputs (lags) | M
1 1 3 1,2,4 3
2 0 2 1,3 3
3 0 2 1,10 3
4 0 3 1,2,3 8
5 1 2 1,2 6
6 0 3 2,3,4 3
7 0 1 1 2
8 0 1 2 2
9 1 2 2,3 12
10 0 2 1,6 5
11 0) 1 1 2
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Case study: NN3 competition
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Figure 7: One and multi-step ahead forecasting for timesé¥iN3 101 to NN3_104.
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Case study: NN3 competition
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Figure 8: One and multi-step ahead forecasting for timesé¥iN3 105 to NN3_108.
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Case study: NN3 competition
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Figure 9: One and multi-step ahead forecasting for timesé¥iN3 109 to NN3_111.
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Conclusions and Futureworks

This work presents a methodology for time series modeling.

Statistical tools combined with novel methodologies pdevadequate
models.
Objectives achieved

The study of the different tasks that compose the methogologm
data pre-processing to model validation.

The automatic selection of a suitable model structure;
What needs to be improved

Initialization phase;

Adding and pruning conditions.

Thanks for your attention.
lvette Luna
lluna@cose.fee.unicamp.br
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