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Abstract— Time series prediction is a crucial task in many
areas but the development of effective modeling and simulation
methods to understand or predict the behavior of time dependent
phenomena remains particularly difficult. In this paper we
propose to use a Genetic Programming (GP) approach as a robust
method for coping with problems in which finding a solution and
its representation is difficult but evaluating the performance of
a candidate solution is reasonably simple.

A new methodology is applied in synergy with the GP process.
The original time series is transformed in a multidimensional
input space where a variable is assigned to each distinct time
delay. Then, the method deals with scalar functions of N variables
and subdivides the input space of N dimensions in two input
spaces. This subdivision is realized by a new algorithm called
Hyper-Volume Error Separation (HVES), able to divide the
original input space according to the errors made by the best
individual found in the early steps of the GP process.

Our results show that coupling HVES with GP is an effective
approach for this task and could be part of the toolbox of many
analysts. Moreover the formulas obtained with the GP process
could give better insights on time dependent phenomena.

I. I NTRODUCTION

In the last decades, engineers and decision makers expressed
a growing interest in the development of effective modeling
and simulation methods to understand or predict the behavior
of many phenomena in science and engineering. Many such
methods are based on regression analysis of a data sample in
order to construct mathematical models for convenience and
ease of interpretation. It is usually assumed that the data points
in the sample are related to a unique function. There are many
applications, however, in which this assumption may constitute
an oversimplification, such as signal processing, time series
prediction, pattern recognition and so on. In such cases the
data-set could span across portions of the input space that
are to be modeled differently, which means that the symbolic
regression should produce a discontinuous function.

Attacking this problem involves facing several challenging
issues:

1) Localizing discontinuity boundaries in the data sample
without preliminary knowledge about their number and
location.

2) Partitioning the data-set according to such boundaries,
in order to improve the fit on each partition.

3) Assembling the formulas found in each partition into
a consistent hierarchy in order to provide a single
discontinuous function.

Obviously, performing the above steps in a multidimensional
space adds substantial further complexity.

In this work we describe a novel approach based on
Genetic Programming (GP). GP is an automatic method for
creating computer programs by means of artificial evolution
[1]. GP may be a powerful means for coping with problems
in which finding a solution and its representation is difficult
but evaluating the performance of a candidate solution is
reasonably simple [2]. GP is particularly suitable for sym-
bolic regression problems, especially when the form of the
approximating function is not known beforehand, because the
process automatically optimizes both the functional form and
the coefficient values of the formula.

With GP, a population of computer programs is generated at
random. Each program is associated with a fitness value which
depends on its ability to solve the problem. Fitter programs
are selected for recombination to produce a new population
by using genetic operators, such as crossover and mutation.
This step is iterated for some number of generations until the
termination criterion of the run has been satisfied — e.g. a
program exhibiting the maximum possible fitness value has
been found. The evolutionary cycle is illustrated in Figure1.

Fig. 1. Basic scheme for artificial evolution

Programs are usually represented as abstract syntax trees,
where a branch node is an element from afunction setwhich
may contain arithmetic, logic operators, elementary functions
with at least one argument. A leaf node of the tree is instead an
element from aterminal set, which usually contains variables,
constants and functions with no arguments.

Symbolic regression problems are usually faced with a func-
tion set including basic arithmetic operators (e.g.,+,−,×, /)
and other elementary functions (e.g.,exp, log, cosine, sine).
As these basic elements are used by the GP process to evolve
more elaborate programs — i.e., formulas — most of any
resulting formula will be continuous and smooth. To improve
accuracy when the underlying model is discontinuous, one
can introduce in the function set conditional operators and



relational operators (if, ≤,≥,=).
In this paper we propose an alternative approach, suitable

for time series data-set and working as follows. We generate
an initial population from scratch and let this population
evolve for a small number of generations. We select the
best individual and evaluate the error for each fitness case.
This error is used by an algorithm developed by us, that we
call Hyper-Volume Error Separation (HVES)and implements
an heuristic for identifying the portions of the input space
requiring different approximating functions. Next we reflect
such partition of the input space on the data-set and run several
preliminary evolutions, one for each partition. The populations
resulting from such independent evolutions are finally merged
and evolved again.

We applied our approach on 11 time series pro-
vided by the Artificial Neural Network & Computational
Intelligence Forecasting Competition (http://www.neural-
forecasting-competition.com).

This paper is organized as follows. In Section II we give an
overview of the Genetic Programming strategy coupled with
the HVES algorithm. Section III describes the experimental
procedure used to forecast the 18 missing values. Section IV
concludes and anticipates on further evolutions related tothis
new methodology.

II. COUPLING GP WITH HVES: AN OVERVIEW

In this section we describe step by step
the working principles of our approach. More
details on the HVES algorithm may be found in
http://www.units.it/̃bartolia/download/HVEStech report.pdf.
Clearly, if the search finds an individual that solves the
problem for a given data sample, then the search stops
immediately. For ease of description, we omit this action
from the description below.

A. Model description

We generate an initial populationPI from scratch and let
this population evolve for a predefined number of generations.
We select the best individual and evaluate the error for
each fitness case. The resulting errors and the entire dataset
D are given as parameters to our HVES algorithm. This
algorithm partitionsD in two subsetsDH andDR according
to an heuristic described later. Then we generate two further
populations from scratch, sayPH andPR, and let them evolve
for a small and predefined number of generations on only part
of the dataset:PH is given onlyDH whereasPR is given only
PR (Figure 2).

Finally, we merge the evolvedPI , PH , PR and let the
resulting final populationPF evolve for a predefined number
of generations on the entire datasetD (Figure 3). We discov-
ered in our early experiments that this merging step is very
helpful. Each evolution phase consists of the same number of
generations and involves a population of the same size.

Our HVES algorithm works as follows. It partitions the
input space in several hyper-volumes whose boundaries are
determined by discontinuities in the error function (i.e.,the

Fig. 2. GP with HVES in the division phase (thick gray arrows represent
populations, thick empty arrows represent data-sets)

Fig. 3. GP with HVES in the merging phase

function associating the error of the best individual with each
fitness case). Then, it selects the ”most difficult” hyper-volume
(see below) and partitions the datasetD in two regions: one
DH including all the fitness cases within this hyper-volume,
and oneDR including all the remaining fitness cases. Recall
that after HVES we focus the evolution of a population onDH

and of another population onDR. The choice of the ”most
difficult” hyper-volume is made through an index describinga
trade-off between number of fitness cases and resulting error
— either few points with a large error, or many points with
a small error. The rationale is that such hyper-volume should
not contain any discontinuity.

The algorithm is also appliedrecursivelyin between HVES
and the merging phase, as follows (recursion is not shown
in the figures, for clarity). The pair(PH ,DH) produced
by HVES plays the role of(PI ,D). The populationPH

actually used for the merging phase is the one produced by
this recursion. Recursion stops when one of the following
conditions is satisfied.

(i) A maximum decomposition depth defined by the user is
reached.



(ii) The HVES algorithm does not find any discontinuity
boundaries.

The same applies to(PR,DR). Recursion turns out to be help-
ful for finding all discontinuity boundaries and for improving
the accuracy on difficult regions of the data sample.

III. E XPERIMENTAL SETUP

The data-sets proposed contain 126 values except for the
time series numbered104, 108 and 109 which contains116,
116 and 123 values respectively. We used the first third
of the data as cross validation set in order to evaluate the
generalization capabilities of the candidates solutions.The
training set consists in the remaining values. For each data-set
we transform the original input space in a multidimensional
input space where a variable is assigned to each distinct time
delay. For our experiments we used all values of time delay
ranging in the interval[1, 18]. The functions and terminals set
used in each case are shown in Table I.

TABLE I

TERMINALS AND FUNCTIONS SET

Terminals set Functions set
Time series101 to 111 with time delayt ∈ [1..18] +,−, /,×

For all data-sets we used as fitness function the scaled mean
of the squared distances between the expected valuesfi and
the valuesgi obtained by the individual:

SMSE =
1

m

m∑

i=1

[gi − (a + bfi)]
2 (1)

where
a = ḡ − bf̄

and

b =
cov(g, f)

var(f)

This fitness function is described more in details in [3].
All the parameters are summarized in Table II. Whenever

GP-HVES runs an evolution, the maximum number of gener-
ations is set to 100.

TABLE II

PARAMETER SETTINGS

Parameter Setting
Population size 2000
Initialization method Ramped Half-and-Half
Initialization depths 2-5 levels
Max depth for trees 10
Selection Tournament of size 7
Elitism 5
Node bias for crossover 90% internals, 10% terminals
Duplication rate 5%
Crossover rate 85%
Mutation rate 15%

Recursion depth (HVES) 2

We used our own Genetic Programming API. This API is
implemented in Java and is based on a modular architecture

where each step of the GP process may be delegated to a
plugin. Plugins for all common algorithms for tree genera-
tion, fitness evaluation, selection and variation are provided.
Moreover this API is based on a strongly typed GP approach
similar to [4].

For each time series we perform 100 independent exe-
cutions. Each execution starts with a different seed for the
random number generator but we used the same seeds for each
test. We ran all simulations on a PC based on a processor Intel
Xeon 3.20 GHz with 2 GB of RAM. Each execution takes
approximately 20 minutes to be completed. At the end of the
process we keep the candidate solution which minimize the
fitness function on the complete data-set associated with the
time series.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we introduced a new approach based on GP
for symbolic regression of time series data-sets where the
underlying phenomenon is completely unknown.

In our approach we execute a preliminary evolution and
use the error exhibited by the best individual in order to infer
discontinuity boundaries in the data sample. Then we apply
an algorithm designed by us for selecting an Hyper-Volume
in the input space whose boundaries approximately follow
the discontinuities. This Hyper-Volume partitions the fitness
cases in two sets that are used for driving further preliminary
evolutions. The best individuals found by these independent
evolutions are then merged and evolved again. The process is
also applied recursively until either no further discontinuities
are found or a predefined recursion depth is reached.

In the future, we plan to investigate other heuristics for
discontinuity detection in noisy data-sets. We are currently
studying the work done in computer vision, signal processing
and statistics fields in [5] [6] [7] [8]. The challenge will be
to adapt these techniques for multidimensional spaces since
these approaches usually work in one or two dimensions only.
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