
 
 

 

  

Abstract—This describes the methodology used to construct 
forecasts for the subset of 11 time series in the NN3 
competition.  All forecasts were calculated in Excel. The author 
is currently writing code to perform the same steps described 
herein. 

  

I. METHODOLOGY 
ESEARCH examining the function approximation 
properties of neural networks dates back at least to the 

late 1980s [1]-[9].  It seems natural to use function 
approximation methods for time series forecasting; however, 
results have been mixed. This research uses a radial basis 
function network with multiquadric basis functions to 
forecast the subset of 11 time series from the NN3 
competition.  
 A radial basis function neural network takes following the 
basic form: 
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where λi represents a coefficient in ℜ to be determined, φ 
represents a radial basis function whose form is to be 
selected, Ci represents a point, or a “center” in ℜr whose 
position is to be determined, and || • || represents the 
traditional Euclidean norm; there are k “centers” (k must also 
be determined), and r is the dimension of the input vector.  
(See [10]-[13].) This approximation is the weighted sum of 
functions of norms (which are radially symmetric).  This is a 
“local” approximating function because the distance of each 
input vector from each of the centers (the Cis) is important in 
determining the output.  The centers will respond differently 
depending upon their proximity to the input vector. The λis 
are estimated by requiring that f(x), the true value of the 
function, equal s(x) at some (or all) of the points at which 
f(x) has been sampled.  Thus, in this case, the problem of 
estimating the λis given a set of points Ci is simply the 
problem of solving a system of linear equations.  The 
requirement that f(x) = s(x) can be relaxed to | f(x) – s(x) | < ε 
for some ε > 0 if there is noise present in the data [13]. 

 Radial basis functions (the φ(•) in equation 2) have 
typically taken one of the following forms: 

 φ(r) = r (linear) 
 φ(r) = r3 (cubic) 
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 φ(r) = r2 log r (thin plate spline) 
 φ(r) = e-r^2 (Gaussian) 
φ(r) = sqrt(r2 + a2) (multiquadric) 

 φ(r) = 1 / sqrt(r2 + a2) (inverse multiquadric) 
In the two multiquadric forms, a2 is a constant which is set 

by the user.  The linear, thin plate spline, and two 
multiquadric forms satisfy a theory by Micchelli [14] which 
proves that the matrix in equation 2 will be invertible; thus, 
the underlying system of equations is guaranteed to have a 
solution. The output of the RBF network is the weighted 
sum of the response of each center to the input vector. 

Most of the RBF networks used in time series forecasting 
applications employ the Gaussian radial basis function. 
However, it is not clear that the Gaussian is the best radial 
basis function to use for this application. The multiquadric 
radial basis function will result in an underlying system of 
equations which will have a solution [14].  Furthermore, it 
possesses desirable localization properties.  Buhmann [15] 
and Buhmann and Powell [16] used generalized Fourier 
transforms to examine the decay – or localization – 
properties of the thin plat spline and the multiquadric forms 
of RBFs.  The result is that, when r (the dimension of the 
input vector) is even, the cardinal function for the thin plate 
spline decays to zero exponentially as || x || → ∞.  When r is 
odd, the decay rate is a direct function of the dimension of 
the problem (as r increases, the decay rate increases).  
Buhman and Powell [16] report that the decay properties for 
the multiquadric are similar to those of the thin plate spline 
when r is odd.  The fast decay is a desirable property for 
function interpolation: a fast decay ensures that “distant” 
points will have little influence in the interpolation. 

 Computationally, the thin plate spline and multiquadric 
radial basis functions provide more information than the 
Gaussian in that the difference in distances for distant 
centers in the time domain can be represented meaningfully 
on a computer.  This is not true for the Gaussian.  For 
example, consider two distances, 3 and 9.  For the thin plate 
spline, they would result in values of 9.9 and 178.0 for φ || • 
||.  The multiquadric (with the constant in the multiquadric, 
a2 = 35) would result in values of 6.6 and 10.8.  For the 
Gaussian, they would result in values of 0.000123 and 6.6E-
36.  The thin plate spline and multiquadric ranges are within 
a reasonable range for computer calculations; this is not true 
for the Gaussian.  Simulations with varying amounts of 
noise suggest that the multiquadric RBF is more robust.  In 
addition, Coulomb, et al. [17] also find that the multiquadric 
is a very robust RBF.  Thus, the multiquadric is used for the 
time series forecasts presented here. 

Casdagli [18] suggests the use of radial basis functions to 
construct a nonlinear mapping of historical time series data; 
this mapping is then used for prediction.  The goal, then, is 
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to find an interpolating function of the form of equation 1.  
This requires determining the number of centers (k), the 
location of the centers (Cis), and the weights (λis).  The 
interpolation approach, so termed by Poggio and Girosi [19], 
uses every data point in the historical data as a center (Ci).  
This interpolation approach forces the function to pass 
through each of the historical data points.  If there is noise in 
the data, then an “approximation” approach is preferred to 
the interpolation approach [13] [19] [20].  In this case, each 
of the Cis in equation 1 is not required to be a historical data 
point, and k « N where N is the number of observations in 
the data.  In this case, the centers (Cis) are identified first.  
Then, given a set of centers, the weights (λis) are computed 
via a system of linear equations.  Thus, for RBF networks, 
the forecasting problem reduces to two basic steps:  
identifying the centers (their number and location) and 
calculating the λis.     

 There are several basic approaches for locating the 
centers:  k-means clustering (as used by [21]-[22]), a 
heuristic “resource-allocating” approach [23], or another 
heuristic-based alternative proposed by Omohundro [24].  
Omohundro’s approach starts with a center at each of the 
historic data points and successively merges centers which 
increase the estimation error the least.  The merging is 
stopped when the estimation error increases by more than 
some ε, which is problem dependent.  Omohundro notes 
that, in the k-means approach, the centers typically are 
located where the data is the most dense; in the best-first 
model merging approach, the centers tend to be located 
where the function varies the most.  Platt’s approach [23] 
allocates a new center when the current set of centers is 
insufficient to model an input.  The model starts with no 
centers, and a desired accuracy (ε) is set.  As inputs are 
presented to the network, it chooses to store some of them as 
centers.  Platt defines two rules for allocating new centers: 
1. An new center should be stored if the input is far away 

from the existing centers (|| x – Cnearrest || > ξ, where ξ is 
problem dependent) and 

2. A new center should be stored if the difference between 
the desired output and the output of the network is too 
large ( f(x) – s(x) > ε). 

The combination of the two rules creates a “compact 
network” ([23], p. 717).  Both Omohundro’s and Platt’s 
approaches address the problems of network architecture, 
overfitting and overtraining which are difficult to avoid with 
traditional neural network models.  That is, there is only one 
hidden layer in the network (see equation 1), and the number 
of nodes in the hidden layer is determined dynamically.  
Finally, the “training” issue is simply a matter of inverting a 
matrix once the centers have been located.  Experiments on 
simulated data suggest that a modification of Platt’s 
approach will work best for time series forecasting.  First, 
the maximum number of centers is set to N/2 where N is the 
number of r-dimensional input vectors available; if N/2 > 30, 
then the maximum number of centers is set at 30 (to avoid 
overfitting).   

The method is coded as follows: 

1. The last r-dimensional observation in the training data is 
selected as the first center. 

2. The distance of each subsequent r-dimensional 
observation in the training data from all existing centers 
is calculated. 

• The current observation is allocated to the closest 
existing center – unless it is “too far” from any 
existing center.  (“Too far” is defined below.) 

• If the current observation is “too far” from an existing 
center, a new center is allocated.  If the new center 
will result in an acceptable number of centers (i.e., no 
exceed the maximum), then a new center is allocated 
at the current observation.  If the maximum number of 
centers will be exceeded by creating the new center, 
two existing centers are merged OR the “distant 
observation” is allocated to one of the existing 
centers.  If the distance of the observation to the 
nearest center is less than the distance between the 
two closest centers, then it is allocated to the nearest 
existing center.  If the two centers are closer to each 
other than the current observation is to any existing 
center, then the two closes centers are merged to form 
one center, and the current observation is allocated as 
a new center. 

• After every observation has been allocated to a center, 
any center which has only one observation allocated 
to it is deleted from the set of centers.  (This step is 
necessary only if there is noise in the data.) 

“Too far” is determined heuristically.  The data are scaled 
to [0, 1], so the farthest two points could be apart is √r    – 
the square root of the input dimension.  “Too far” is 
calculated as √r / ζ.  For nonseasonal data ζ is 70.0 for 
annual data; 60.0 for quarterly data; and 50.0 for monthly 
data.  For seasonal data, it is 55.0 for quarterly data and 45.0 
for monthly data.  (This heuristic borrows the idea that data 
collected more frequently are noisier from Schnaars and 
Bavuso, 1986.)  The distance for seasonal data is slightly 
larger because some of what is termed “seasonality” could 
really be noise.  Results presented in the next section suggest 
that this value should be smaller for short-term forecasts and 
larger for longer-term forecasts.  (This is consistent with 
Lowe and Webb’s finding (1991) that networks should be 
trained to more rigorous tolerances for short-term forecasts.  
The smaller distance results in a network which mimics the 
historical data more closely.) 

 One final parameter must be determined:  the number of 
inputs to the model, r, or the “dimension” of the problem.  
This was determined using correlations: up to a maximum of 
the five strongest lags were and a heuristic test for a trend 
(which examined runs of increases or decreases) was used to 
detect data with a trend.  For data with a trend, the first 
differences were used in the RBF model.  (Lohninger [25] 
indicates that the RBF approach will perform poorly for data 
with a linear trend.)   

The centers were then located as described above and the 
forecasts were calculated.  k-step forecasts were calculated 
iteratively (with previous forecasts as inputs).  If the 
forecasts “blew up” (became dramatically large), then ζ was 



 
 

 

incremented by 5 and the process repeated.  Finally, for 
detrended data, the sums are calculated for the forecasts and 
seasonality is put back into the data. 
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