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Abstract— A new hybrid forecasting methodology is pro-
posed which leverages statistical and Artificial Intelligence
(AI) techniques to perform multi-step ahead forecasting. This
methodology is based on decomposing the time series into
its structural components, predicting of each component in-
dividually and then reassembling the extrapolations to obtain
forecast for a time series. The STL decomposition procedure
is implemented to obtain the seasonal, trend and irregular
components of a time series whilst Generalized Regression
Neural Networks (GRNN) is used to perform out-of-sample
extrapolations based on dynamic calibration of the training
process for each component individually. The univariate Theta
model is used to reinforce the directional stability and reliability
of predictions. The proposed methodology is applied on 111 time
series from the NN3 competition to obtain 18 out-of-sample
predictions.

I. INTRODUCTION

Since the pioneering work of Persons (1919) on the
decomposition of time series, a large number of decompo-
sition procedures were developed that perform additive or
multiplicative disaggregation of the data into salient com-
ponents such as trend, seasonality and error (Dagum (1988),
Cleveland et al. (1981a, 1981b) and Cleveland et al. (1990)).
These were primarily employed to facilitate time series
analysis and understanding of the business cycle (Burns
& Mitchell (1946)). However, after the imperative work of
Box Jenkins (1970), on modelling seasonally adjusted data,
decomposition techniques were also seen as a useful tool
in forecasting. Some of the recent literature in this field
includes the works of Landram, Abdullat & Shah (2004),
Hansen & Nelson (1997) and Hansen & Nelson (2003). The
latter implemented the Census X-11 (Shiskin et al.(1967))
procedure for additive decomposition of the time series into
trend-cycle, seasonality and error, and used a time-delay
neural network to obtain forecasts for the seasonality and
trend components which were then combined into a single
forecast through a backpropagation algorithm.

In this paper we propose a hybrid forecasting methodol-
ogy that leverages three techniques: decomposition, artificial
neural network and statistical model, to perform multi-step
ahead prediction of reasonable accuracy. The data used in
the analysis of the proposed methodology are the 111 time
series from the NN3 neural network forecasting competition.
Each time series is decomposed using STL decomposition
procedure to obtain seasonal, trend and residual components.
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These individual components are predicted multi-step ahead
using generalized regression neural network (GRNN). Theta
forecasting model is used to reinforce long term behaviour
for the component predictions. Finally, the predicted com-
ponents are combined to produce the final multi-step ahead
forecast.

The paper unfolds as follows. In section two a brief
overview of Artificial Neural Networks (ANNs) and GRNNs
is given followed by a description of the methodology
developed in section three. Descriptions of results is given
in section four, and conclusion is made in section five.

II. AN OVERVIEW OF ARTIFICIAL NEURAL NETWORKS

Neural Networks (hereafter NN) were developed through
the realization that the human brain, being a complex, non-
linear and parallel computer, functions in a radically diverse
manner to a computer processor. Since the early 1950s, sci-
entists have studied extensively the structure and capabilities
of the human brain in processing information, and have tried
to encompass as many of those characteristics into a NN.
This novel approach to information processing has gained a
lot of popularity amongst various scientific disciplines such
as engineering, computer science, biochemistry and physics.

With their successful implementation in other sectors,
NNs are now emerging in finance, economics and the busi-
ness industry. Their characteristic properties make them an
attractive modelling methodology for addressing financial
and economic problems. These include the nonlinearity of
their structure, their built-in capability to adapt to new
information, as well as the universality of their design, being
the same in all the domains that involves their application
(Haykin (1994)). In addition, no explicit assumptions need
to be made on the functional relationship between the desired
output and the independent variables of the model. Therefore
NN provide important advantages over the current statistical
techniques used in modelling and predicting financial and
economic data.

Despite this growing interest in the use of NNs as fore-
casting tools, statisticians and econometricians have been
reluctant in trusting their predictive capabilities over well-
established statistical techniques. This is largely the result
of mixed conclusions from various studies comparing the
performance of NNs against traditional statistical models
(Timo Terésvirtaa, Dick van Dijk, Marcelo C. Medeiros



(2005), Heravi, S., Osborn, D. R., & Birchenhall, C. R.
(2004)). Zhang, Patuwo et al. (1998) provides a synthesis of
published research in the area and draws upon some general
conclusions on the limitations and advantages of NNs over
traditional model-based methods.

Many experts in the field expressed the view that the
realization of the potential of NNs involves more art than
science (Zhang, Patuwo et al. (1998), Chatfield (1993)). This
statement stems from the fact that the application of NNs
involves a large number of degrees of freedom. Consequently,
a great deal of experimentation and investigation, through
trial-and-error, is required in order to establish parameter
settings that provide the best architectural structure of the
network. These degrees of freedom include, but are not
exclusive to, the type of activation function, initial synaptic
weights, connectivity of the neurons, learning process of the
network and the number of inputs and hidden neurons. These
decisions significantly affect the accuracy and performance
of the network as well as its generalization capabilities.
Therefore the application of NNs in forecasting involves
a great level of modelling complexity, making it a time
consuming process. Despite a considerable number of articles
written with the scope of developing a stepwise selection of
the parameters involved, no conclusive decision has been
made on the best way to address this problem (Michel
Nelson, Tim Hill & Marcus O’Connor (1999), Anders, U.
and Korn, O. (1999),Terésvirta, T. and Lin, C.-F. J. (1993),
Crone, F. Sven (2004), Zhang, G. P. & Qi, M. (2005)).

In the current research Generalized Regression Neural
Networks are used for prediction. This class of neural net-
works was proposed by Specht (1991) and presents important
advantages over standard neural network architectures such
as the feed-forward back-propagation algorithm (hereafter
FFBP). The need for extensive designing and experimen-
tation with free parameters is significantly reduced through
the use of GRNNs. Apart from the small number of free
parameters involved in their designing, GRNNs are also
characterized by fast learning and convergence to the optimal
regression surface. Unlike the standard FFBP neural network
which needs a large number of iterations, and hence large
computational time to converge to the desired functional
form, GRNN adopts a one-pass learning algorithm and
therefore reduces this limitation significantly. In addition,
GRNN applications do not face the frequently encountered
local minima problem of the FFBP applications and do not
generate forecasts that are physically implausible (Cigizoglou
(2005)).

Like any neural network, GRNN is used to form any arbi-
trary mapping between input and output variables through the
process of training. It can approximate any arbitrary function
between input and output vectors, through kernel regression,
by creating a relationship between the given input variables
and the expectation of the output variables. The latter is
defined by:

ISy (X y)dy

Elyl =
W= TS Xy

D

where y is the output variable estimated by GRNN, X is the
input variable to GRNN and f(X,y) is the joint probability
density function of X and y learned by GRNN through the
training process. During the training process, GRNN forms
the joint density function, f(X,y), by observing each input
and output pair (X,y). If a new input is given, GRNN
estimates the most likely output value Efy|X].

Particular to the GRNN is the use of the smoothing factor
(or spread), o, which alters the degree of generalization of
the network. High smoothing factors increase the network
ability to generalize, they may also degrade the error of
prediction. Smoothing factors approaching 1 will straighten
the path of the prediction line. Conversely, low smoothing
factors degrade the network ability to generalize and may
even prevent it from doing any prediction at all. Smoothing
factors approaching O essentially create a dot-to-dot map.

Despite the attractive features of GRNNSs, these have not
been extensively applied to forecasting problems. Whilst
there are numerous applications of the FFBP neural networks
to predict financial and economic time series ((Trippi & Tur-
ban (1993), Azoff (1994), Refenes (1995), Gately (1996)),
these are very limited in the case of GRNN. In the current
research GRNNs are used to forecast the trend and residual
components from each time series.

IIT. RESEARCH METHODOLOGY

We propose a forecasting methodology which is based on
the estimated inherent structural properties of the observed
time series. The structural evolution of a time series is studied
through its decomposed seasonal, trend and residual com-
ponents. Each of these components is modelled individually
and appropriate forecasting methods are employed to perform
multi-step ahead prediction on each of the obtained sub-
series. The forecasting methods applied to each component
must be capable of predicting multi-step ahead, i.e. these
methods must model short-term properties as well as long-
term trend of a time series.

The main steps of the proposed methodology are:

1) Decompose a time series using STL decomposition
technique into trend, seasonal and residual components
(sub-series).

2) Using seasonality component, obtain the value for the
forecast horizon looking back at the same point in the
seasonal cycle.

3) Apply GRNN to the trend component and obtain
estimate for the forecast horizon. Use Theta method to
obtain another estimate for the same forecast horizon.
The average of these two estimates is the prediction
for the trend component.

4) Apply GRNN to the residual component to obtain
estimate for the forecast horizon.

5) The estimates from the seasonal, trend and residual
components are linearly combined to obtain prediction
for the forecast horizon.

The above steps are repeated for each various forecast

horizons. For the NN3 competition the predictions are made
from 1-step ahead to 18-steps ahead.



A. The Decomposition Procedure

For the decomposition of the time series into its constituent
components, the well-established STL decomposition proce-
dure (Clevelant et al. (1990)) is employed. It is a filtering
procedure which decomposes the data through a sequence
of applications of time series smoothing operations using
locally-weighted regression (LOESS). The parameters for
the STL procedure are obtained from the eigenvalue and
frequency response analysis of a given time series. Several
elegant design features of STL make it an attractive choice
for time series decomposition. Among these is its ability to
handle any amount of variation in the trend and seasonal
components, and most importantly the robustness of the
returned trend and seasonal components which are not sus-
ceptible to distortion by transient and aberrant behaviour in
the time series. In addition, it is computationally tractable and
can be easily implemented in statistical software packages'.

Hence, for every time series x, STL returns, m, s and e
such that:

r=m-+s—+e )

where m is the trend component in the time series, s is the
seasonality component and e is the residual component.

B. Extrapolating the Seasonality Component

The STL decomposition procedure, unlike other proce-
dures such as SABL, imparts almost perfect seasonality
which remains static across a time series with the range of
values for each period varying depending on the level of
seasonality inherent in the observed series. One can therefore
obtain estimates of future seasonality by looking back at the
same point in the seasonal cycle.

The data considered in the current research is specified as
time series of monthly interval. Given this information, it was
assumed that all time series contain annual seasonality and is
incorporated in the STL decomposition procedure. Equation
(3) was therefore used to obtain out-of-sample forecasts of
the seasonality component for multi-steps ahead, assuming
that the seasonality component will not change in the near
future. The following relation therefore applies:

8 = ST—12+i 3)

where §; denotes the forecast of the seasonality component
at time point ¢ and 7" denotes the total length of the time
series.

C. Calibration of GRNN

The training (and testing) process of GRNN is designed to
achieve high accuracy levels across the two sub-series, trend
and residual. For training (calibration) the GRNNS, a train-
ing set representing the neural network inputs and outputs
(targets) are constructed as described. The decomposed sub-
series (trend & residual) is broken down into sequential non-
overlapping windows of length equal to the forecast horizon
starting from the last observed value in the sub-series. For

I'The statistical software used in the current research is the R Language
and is free to download from: www.r-project.org.

each of this forecast window, a corresponding input (look-
back) window is framed just prior to the forecast window,
and its length is determined dynamically. The time series
values in the input windows and the corresponding forecast
windows, excluding the last window set, constitute the input
and output pairs for the training of the GRNN. The last
input window and forecast window is used for testing the
predictability of the network.

These training and testing pairs are then scaled by the
mean of the observed time series. This step is necessary in
neural network calibration to ensure stable performance of
the network in estimating the nonlinear relationship between
these pairs and to obtain consistent and reliable predictability
of forecasts. The same scaling process is also applied for out-
of sample prediction.

Three important factors that can influence considerably the
performance of the GRNN are the choice of the input window
size, forecasting horizon and smoothing parameter. In this
study, the size of the forecasting window was chosen to be
the same as the specified forecast horizon (one for single or
18 for multi-step ahead forecasts), however the size of the
input window was obtained dynamically.

For a given time series and for a particular forecast
horizon, the GRNN was trained and tested using a number of
different input window sizes starting with the smallest size
(one) and increasing to the largest possible size accounting
for the fact that the last forecast window is reserved for
testing. The optimal input window size for each time series
was then chosen based on the corresponding minimum mean
absolute error (MAE) of this iterative procedure. The optimal
input window is tuned based only on the last forecasting
window. This is based on our belief, which is in line with
general consensus, that future values of a time series depend
more on the recent features of the data, than on features
that lag far behind in time. So if the network is able to
predict the last few observations in the time series with
reasonably good accuracy, it is likely to give the same level
of prediction accuracy for the out-of sample forecast window.
The chosen optimal input window is then used for out-of-
sample prediction.

The choice of the smoothing parameter is another impor-
tant issue in the implementation of GRNNSs. In the current
research, this parameter is selected in a way similar to that
of the procedure applied for selecting the optimal input
window size. After the selection of the input window size,
the GRNN is trained and tested with a range of spreads
between 0.2 and 2. This range was decided based on our
experimentation to ensure proper predictive properties across
all time series considered in this study. As mentioned in
the previous section, a very small smoothing parameter can
prevent the network from generalizing or even predicting,
whilst a large smoothing parameter can degrade the results
considerably. Hence, the optimal spread for each time series
and forecast horizon was the spread corresponding to the
minimum testing error of the iterative testing process and
was tuned based only on the last forecast window. This was
then used for out-of sample prediction.



The process of training and selecting the optimal training
parameters (input window & spread) is done independently
for the trend and residual components of the time series.
This can be justified based on the fact that these two
components differ fundamentally in their structure. By doing
so, forecasts of better accuracy can be achieved by modelling
the component nonlinearity to the best possible extent.

D. Short Length Time Series

In order to predict 18 steps into the future with a rea-
sonable accuracy, an appropriate sized window must be
considered for GRNN training, thereby introducing inherent
restriction on the minimum length of the time series for the
implementation of the iterative procedure described above,
for the selection of the training parameters. Consequently,
for short time series (of length 51 or less), the proposed
forecasting approach was modified. For such series the input
window size and smoothing parameter are give reasonable
values obtained through our experimentation.

E. Reinforcement of Trend with Theta Method

Since NN3 competition requires predicting forecasts of
longer forecast horizon (18 steps ahead), the prediction
methodology should posses the ability of modelling the long-
term behaviour of a time series. From our analysis we found
that for the time series in this study the GRNN is good at
predicting short-term nonlinear structures. However, it does
not fair well in estimating long-term trends of a time series.
A similar observation was also made by Zhang & Qi (2005),
whereby they noted “the inability of the feedforward neural
network model to model a trend seems to be at odds with
its universal approximation theory”. So in our methodology
we reinforced our estimate of GRNN with that of Theta
statistical method (Assimakopoulos & Nikolopoulos (2000))
for the trend component to reinforce the directional reliability
of our results.

The Theta method is univariate forecasting model based
on the modification of the local curvatures of a time series
through the Theta coefficient. This modification retains the
mean and slope of the original data but not their curvature.
The value of the Theta parameter is attributed to the long-
term behaviour of the time series or the augmentation of
the short-term behaviour. The smaller (larger) the value
of the Theta coefficient, the larger the degree of deflation
(inflation). In the extreme case where 6 = 0, the time series
is transformed into a linear regression line. This model has
been selected for best performance in the M3 forecasting
competition (Makridakis & Hibon (2000)) and is defined as
follows:

Let x; be a time series with n observations. The equation
of the a Theta-Line is defined as:

ye = a+ Bt —1) + bz, 4
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Theta method is, as proved in previous forecasting compe-
tition, has better modelling capability of long run behaviour
of a time series. The GRNN estimate of the trend com-
ponent is averaged with that of the estimate provided by
Theta method to obtain the prediction for different forecast
horizons. This adjusts the point forecast to be inline with the
long term trend of the time series and hence produce better
accuracy.

F. Offsetting of GRNN Prediction

It has been observed from experimentation on the in-
sample data that the predictions given by the GRNN for
the trend component lie at a vertical offset to the actual
values, and thus magnifying significantly the error of the
estimation. This seems to be the case even for time series
with a relatively regular structure and small variability within
the directional component.

In this study, in order to alleviate this problem, the pre-
dicted series was shifted by an offset distance, i.e. the vertical
distance between the last observation of the actual time series
and the first observation of the predicted series. By negating
this offset, the predicted series is brought back to lie within
the same range as the actual values thereby reducing the error
significantly. We expect this behaviour to continue even on to
the out-of sample predictions and therefore apply the offset
adjustment for out-of sample extrapolation.

One can argue that if the last value of the time series
happens to lie on an extreme value compared to the mean of
the time series then this offsetting will increase the prediction
error instead of decreasing. Since this offset is applied only
to the trend component where we average the estimate of
GRNN (with the offset negated) with the estimate of Theta
method we think that the effect of these extreme value will
reduce.

G. Prediction of Residual Component

To our knowledge, none of the existing statistical and Arti-
ficial Intelligence Methodologies deals with the extrapolation
of the residual component obtained through a decomposition
procedure. The irregular component is the residual variability
left in the data after the removal of the main components
(usually trend-cyclical and seasonal component), of a time
series. Although academics agree that important information
can still be found in the irregular component, and there-
fore its exclusion from the prediction process can result
in negative ramifications for forecast accuracy, nevertheless,



existing statistical methodologies are unable to predict and
model the erratic behaviour of its sub-series and therefore
in all applications the irregular component is excluded or
is assumed to be a white noise process with zero mean
(Newbold (1991)). In the current paper, an attempt is made to
include the irregular component into the prediction process
rather than discard it completely.

In the case of statistical techniques however, the exclusion
of the error component is offset by enhanced prediction
results obtained from de-noised data. It is well known that the
elimination of noise from the data can improve significantly
the forecasting performance of statistical techniques and thus
is usually advised for the data to be pre-processed and filtered
before extrapolation.

This is not the case however with Artificial Intelligence
techniques. Even though, it is supported in the literature
that pre-processing of the data such as deseasonlising and
detrending, can improve predictions significantly when im-
plementing neural network techniques ( Nelson, Hill, Remus
& O’Connor (1999)), as shown by Zhang & Qi (2005),
predicting a series with high level of noise such as the
residual series after the elimination of the trend and seasonal
component, is possible with artificial intelligence techniques
and can reduce the estimation error significantly. The reason
behind this is the fact that neural networks, and partic-
ularly GRNN, cannot overshoot but are always likely to
return a prediction within a reasonable range from the real
observation. As noted by Cigizoglou (2005), GRNN “do
not generate forecasts which are physically implausible”.
For these reasons, it was decided that much benefit can be
obtained from the inclusion of the residual component in the
forecasting process rather than its exclusion.

IV. RESULTS & DISCUSSION

Our proposed hybrid methodology is applied to the com-
plete set of 111 times series of NN3 competition. All the
time series examined were of monthly frequency with above
zero positive values. The structural characteristics varied
greatly across these 111 time series. The shorter time series
(from NN1-NN50) with 51 or 50 observations (in the case
of NN22 & NN31) were mostly dominated by noise with
insignificant seasonal and trend components. Most of the
longer time series were dominated by a defined seasonal
structure, and some time series (NN59, NN102, NN103)
are perfect seasonal with almost no noise. There were other
time series with both trend and seasonal behaviour, and in
few cases some outliers were also be observed (e.g. NN108,
NN110).

The time series for the analysis are not subjected to any
data preprocessing and are decomposed using STL in the
first stage. The scaling of the training data with the mean
of the time series was helpful in limiting the bounds of the
predictions. Based on this we say that our methodology is
robust to outliers.

Preliminary testing of our methodology is performed by
forecasting multi-step ahead the last 18 observations of each

time series. The predictions obtained from this testing pro-
cess seem to be inline with the observations. Following four
figures display the actual series and corresponding predicted
series for the last 18 observations. From the small mean
absolute error of these predictions for all the time series we
conclude that our methodology is capable of performing well
in both for short-term and long-term. Finally, we predicted 18
steps ahead out-of-sample forecasts for the NN3 competition.

V. CONCLUSION

We propose a new hybrid forecasting methodology that
makes use of structural decomposition technique along with
neural network and statistical method to perform multi-step
ahead forecasting to a reasonable extent. The time series is
decomposed into seasonal, trend and residual components.
These components are then predicted separately into the
future. The forecasts thus obtained from these components
are combined to obtain the final prediction. We used Gener-
alized Regression Neural Networks for predicting the trend
and residual components. The prediction from the trend is
reinforced with the prediction from the Theta methods for
long term directional stability. We tested our methodology on
the 18 in-sample observations and found the mean absolute
errors of acceptable range. For our experimentation we claim
that this methodology is robust to outliers and capable of
capturing both short-term and long-term behaviour of a time
series.
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